MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploiting object dynamics for recognition and control

Author(s)
Robbel, Philipp
Thumbnail
DownloadFull printable version (14.07Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Advisor
Deb Roy.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis explores how state-of-the-art object recognition methods can benefit from integrating information across multiple observations of an object. Considered are active vision systems that allow to steer the camera along predetermined trajectories, resulting in sweeps of ordered views of an object. For systems of this kind, a solution is presented that exploits the order relationship between successive frames to derive a classifier based on the characteristic motion of local features across the sweep. It is shown that this motion model reveals structural information about the object that can be exploited for recognition. The main contribution of this thesis is a recognition system that extends invariant local features (shape context) into the time domain by adding the mentioned feature motion model into a joint classifier. Second, an entropy-based view selection scheme is presented that allows the vision system to skip ahead to highly discriminative viewing positions. Using two datasets, one standard (ETH-80) and one collected from our robot head, both feature motion and active view selection extensions are shown to achieve a higher-quality hypothesis about the presented object quicker than a baseline system treating object views as an unordered stream of images.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.
 
Includes bibliographical references (p. 127-132).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41752
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program in Media Arts and Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.