MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A non-coherent ultra-wideband receiver : algorithms and digital implementation

Author(s)
Vitavasiri, Sinit
Thumbnail
DownloadFull printable version (572.6Kb)
Alternative title
Non-coherent UWB receiver : algorithms and digital implementation
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Anantha P. Chandrakasan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ultra-wideband (UWB) communication is an emerging technique for wireless transmission in the 3.1-10.6 GHz unlicensed band with signal bandwidths of 500 MHz or greater. A non-coherent receiver based on energy collection reduces complexity, cost, and power consumption at the cost of channel spectral efficiency. The receiver collects the signal energy in two time windows and determines the transmitted bits based on which window has greater energy. This thesis explains the implementation of low-complexity detection, synchronization, and decoding algorithms for a non-coherent ultra-wideband receiver. The receiver is modeled in MATLAB to measure performance. The UWB receiver performs effectively in noisy channels. At the signal-to-noise ratio (SNR) of 0 dB, the receiver achieves a detection miss rate of 2.1% and a false alarm rate of 1.2%. The synchronization error (within ±2 chip periods) rate is 0.5%. The bit error rate is 8.6%, but it drops sharply to 0.1% at an SNR of 5 dB. Moreover, the detection and the synchronization processes take 19.72 p.s and 22.53 pts, respectively. The digital system is implemented in Verilog, which is mapped to hardware (FPGA). In the final system, a radio frequency and an analog front-end interface with the FPGA, resulting in a complete radio receiver.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (leaves 119-121).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42022
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.