MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quasi-orthogonal wideband radar waveforms based on chaotic systems

Author(s)
Willsey, Matt (Matt S.)
Thumbnail
DownloadFull printable version (3.226Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Alan V. Oppenheim and Kevin M. Cuomo.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
With the development of A/D converters possessing sufficiently high sampling rates, it is now feasible to use arbitrary, wideband waveforms in radar applications. Large sets of quasi-orthogonal, wideband waveforms can be generated so that multiple radars can simultaneously operate in the same frequency band. Each individual radar receiver can process its own return as well as the orthogonal returns from the other radars, which opens the possibility for developing algorithms that combine data from multiple radar channels. Due to the random nature of chaotic signals, it is possible to develop a procedure for generating large sets (> 50) of quasi-orthogonal radar waveforms using deterministic chaos. Deterministic chaos is defined as a bounded, aperiodic flow with a sensitive dependence on initial conditions. There are many different types of chaotic systems. In this thesis, waveforms will be generated from the well-studied Lorenz system. Each waveform from the Lorenz system can be fully characterized by three parameters (o, b, and r) and a set of initial conditions, (xo, yo, zo). The particular parameter values greatly affect quality of the Lorenz waveform as quasi-orthogonal radar waveform. Therefore, this thesis conducts a parameter study to quantify how the parameters affect various radar waveform metrics. Additionally, this thesis proposes a procedure for modifying the Lorenz waveform in order to improve its performance on these metrics.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2007.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 137-138).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42023
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.