Show simple item record

dc.contributor.advisorDaniela Rus.en_US
dc.contributor.authorVarshavskaya, Paulinaen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-09-02T17:56:07Z
dc.date.available2008-09-02T17:56:07Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42058
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 101-106).en_US
dc.description.abstractIn this thesis, we study distributed reinforcement learning in the context of automating the design of decentralized control for groups of cooperating, coupled robots. Specifically, we develop a framework and algorithms for automatically generating distributed controllers for self-reconfiguring modular robots using reinforcement learning. The promise of self-reconfiguring modular robots is that of robustness, adaptability and versatility. Yet most state-of-the-art distributed controllers are laboriously handcrafted and task-specific, due to the inherent complexities of distributed, local-only control. In this thesis, we propose and develop a framework for using reinforcement learning for automatic generation of such controllers. The approach is profitable because reinforcement learning methods search for good behaviors during the lifetime of the learning agent, and are therefore applicable to online adaptation as well as automatic controller design. However, we must overcome the challenges due to the fundamental partial observability inherent in a distributed system such as a self reconfiguring modular robot. We use a family of policy search methods that we adapt to our distributed problem. The outcome of a local search is always influenced by the search space dimensionality, its starting point, and the amount and quality of available exploration through experience.en_US
dc.description.abstract(cont) We undertake a systematic study of the effects that certain robot and task parameters, such as the number of modules, presence of exploration constraints, availability of nearest-neighbor communications, and partial behavioral knowledge from previous experience, have on the speed and reliability of learning through policy search in self-reconfiguring modular robots. In the process, we develop novel algorithmic variations and compact search space representations for learning in our domain, which we test experimentally on a number of tasks. This thesis is an empirical study of reinforcement learning in a simulated lattice based self-reconfiguring modular robot domain. However, our results contribute to the broader understanding of automatic generation of group control and design of distributed reinforcement learning algorithms.en_US
dc.description.statementofresponsibilityby Paulina Varshavskaya.en_US
dc.format.extent106 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDistributed reinforcement learning for self-reconfiguring modular robotsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc231630174en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record