Show simple item record

dc.contributor.advisorGeorgia Perakis and Soulaymanè Kachani.en_US
dc.contributor.authorSimon, Carine (Carine Anne Marie)en_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2008-09-02T17:57:13Z
dc.date.available2008-09-02T17:57:13Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42064
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2007.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 199-204).en_US
dc.description.abstractIn this thesis, we focus on oligopolistic markets for a single perishable product, where firms compete by setting prices (Bertrand competition) or by allocating quantities (Cournot competition) dynamically over a finite selling horizon. The price-demand relationship is modeled as a parametric function, whose parameters are unknown, but learned through a data driven approach. The market can be either in disequilibrium or in equilibrium. In disequilibrium, we consider simultaneously two forms of learning for the firm: (i) learning of its optimal pricing (resp. allocation) strategy, given its belief regarding its competitors' strategy; (ii) learning the parameters in the price-demand relationship. In equilibrium, each firm seeks to learn the parameters in the price-demand relationship for itself and its competitors, given that prices (resp. quantities) are in equilibrium. In this thesis, we first study the dynamic pricing (resp. allocation) problem when the parameters in the price-demand relationship are known. We then address the dynamic pricing (resp. allocation) problem with learning of the parameters in the price-demand relationship. We show that the problem can be formulated as a bilevel program in disequilibrium and as a Mathematical Program with Equilibrium Constraints (MPECs) in equilibrium. Using results from variational inequalities, bilevel programming and MPECs, we prove that learning the optimal strategies as well as the parameters, is achieved. Furthermore, we design a solution method for efficiently solving the problem. We prove convergence of this method analytically and discuss various insights through a computational study.en_US
dc.description.abstract(cont.) Finally, we consider closed-loop strategies in a duopoly market when demand is stochastic. Unlike open-loop policies (such policies are computed once and for all at the beginning of the time horizon), closed loop policies are computed at each time period, so that the firm can take advantage of having observed the past random disturbances in the market. In a closed-loop setting, subgame perfect equilibrium is the relevant notion of equilibrium. We investigate the existence and uniqueness of a subgame perfect equilibrium strategy, as well as approximations of the problem in order to be able to compute such policies more efficiently.en_US
dc.description.statementofresponsibilityby Carine Simon.en_US
dc.format.extent204 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleDynamic pricing with demand learning under competitionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.oclc231846029en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record