MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Progression of chondrocyte signaling responses to mechanical stimulation in 3-D gel culture

Author(s)
Chai, Diana H
Thumbnail
DownloadFull printable version (4.875Mb)
Other Contributors
Massachusetts Institute of Technology. Biological Engineering Division.
Advisor
Alan J. Grodzinsky.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Mechanical stimulation of 3-D chondrocyte cultures increases extracellular matrix (ECM) production and mechanical stiffness in regenerating cartilage. The goal of this study was to examine the progression of chondrocyte signaling responses to mechanical stimulation in 3-D culture during tissue regeneration. To investigate the role of integrins in chondrocyte mechanotransduction, function-blocking antibodies and small-molecule antagonists were used to disrupt integrin-matrix interactions during dynamic compression of chondrocytes in 3-D agarose culture. At early days in culture, blocking [alpha]v[beta]3 integrin abolished dynamic compression stimulation of proteoglycan synthesis, independent of effects in free-swell culture, while blocking [alpha]5[beta]1 integrins abolished the effect of compression only when blocking in free-swell increased proteoglycan synthesis. This suggests that disrupting [alpha]v[beta]3 and [alpha]5[beta]1 interactions with the ECM influences proteoglycan synthesis in distinct pathways and that [alpha]v[beta]3 more directly influences the mechanical response. To further distinguish individual mechanotransduction pathways, we investigated the temporal gene transcription response of chondrocytes to ramp-and-hold compression on Days 1, 10, and 28 in 3-D agarose culture. Clustered and individual gene expression profiles changed temporally and in magnitude over time in culture. Day 1 cultures differed from Days 10 and 28, reflecting changes in cell microenvironment with development of pericellular and extracellular matrices. Comparisons with the response of intact tissue to compression suggested similar regulatory mechanisms. We further investigated MAPkinase (ERK1/2, p38, JNK) and Akt activation on Days 1 and 28 in agarose culture through phosphorylation state-specific Western blotting.
 
(cont.) Compression induced transient ERK1/2 phosphorylation on both days, with Day 28 levels similar to intact tissue. Unique from tissue behavior, only slight transient p38 phosphorylation was observed on Day 28, and SEK phosphorylation was undetected. Akt was uniquely regulated in intact cartilage compared to MAPks, with decreased total Akt levels over time under static compression. In contrast, compression transiently decreased pAkt levels in agarose cultures, with no changes in total Akt. Changes in the chondrocyte responses to compression with time in agarose culture suggest that cells sense different forces and respond differently with time; further studies may help optimize mechanical loading for tissue-engineering purposes. These studies provide a basis for further examination of mechanotransduction in cartilage.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (leaves 148-156).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/42071
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering Division.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.