Show simple item record

dc.contributor.advisorK. Dane Wittrup.en_US
dc.contributor.authorChao, Gingeren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemical Engineering.en_US
dc.date.accessioned2008-09-02T17:59:31Z
dc.date.available2008-09-02T17:59:31Z
dc.date.copyright2007en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42076
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractEpidermal growth factor receptor (EGFR) signaling leads to cellular proliferation and migration, and thus EGFR dysregulation can significantly contribute to the survival of tumor cells. Aberrant EGFR signaling due to receptor overexpression, mutation, or autocrine ligand has been observed in a wide variety of malignancies, and antibody drugs which inhibit EGFR signaling have been developed. However, the epitopes of most EGFR antibodies have not been characterized, and the marginal efficacies of current antibodies underscore the need for improved therapeutics. In this thesis work, we have created a novel method of epitope mapping, which is the determination of antigen residues responsible for mediating an antibody-antigen interaction. In our technique, a library of random mutants of the EGFR antigen is displayed on the surface of yeast, and the library is combinatorially selected for loss of binding to the antibody being mapped. If a mutant shows loss of binding to an antibody, then that residue is a potential contact residue. In addition, we found that many mutants caused a global misfolding of the antigen, requiring the use of high-throughput sorting to remove the misfolded mutants. The development of our epitope mapping method using random mutagenesis and yeast surface display enabled the successful mapping of four different antibodies and three designed ankyrin repeat proteins binding to EGFR. In addition, we continued work on engineering novel antibodies against EGFR domains II and IV. Antibodies against these domains are hypothesized to directly inhibit receptor dimerization and subsequent activation, as opposed to traditional anti-EGFR antibodies which block ligand binding. To accomplish this, peptide mimics of EGFR loops were used as antigens; however, antibodies generated using both yeast surface display and rabbit monoclonal technology were peptide-specific, but did not bind to EGFR protein.en_US
dc.description.abstract(cont) Finally, we developed a mathematical model to describe equilibrium EGFR ligand binding and dimerization. Based on observations that polyclonal antibodies against EGFR domain II or IV eliminate high affinity EGF binding normally observed on the surface of cells, we hypothesized that preformed inactive dimers were the high affinity component. Our model incorporating this hypothesis successfully reproduced experimental data, resulting in characteristic concave-up Scatchard plots.en_US
dc.description.statementofresponsibilityby Ginger Chao.en_US
dc.format.extent156 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemical Engineering.en_US
dc.titleCharacterizing and engineering antibodies against the epidermal growth factor receptoren_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc239277805en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record