MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ocean circulation and dynamics on the west Antarctic Peninsula continental shelf

Author(s)
Moffat Varas, Carlos F
Thumbnail
DownloadFull printable version (39.62Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Robert C. Beardsley and W. Brechner Owens.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Observations of current velocity, temperature, salinity and pressure from a 2-year moored array deployment and four hydrographic cruises conducted by the United States Southern Ocean GLOBEC program on the western Antarctic Peninsula continental shelf are used to characterize the ocean circulation and its connection to fresh water and heat fluxes on the shelf. Mean velocities on the shelf are of the order of 5 cm/s or less. Tidal motions are dominated by the M2 and S2 semi-diurnal tides and the 01 and K1 diurnal tides, although the tidal velocities are typically less than 2 cm/s. Near-inertial motions are relatively large, with current velocities as high as 26 cm/s. It is shown that Marguerite Trough, a large bathymetric feature connecting the shelf-break to Marguerite Bay, plays a critical role in determining the circulation. The mean flow is strongly steered in the along-slope direction, and the tidal currents also show increasing current polarization at depth in Marguerite Trough. At time-scales of 5 to 20 days, the observations show bottom-intensified motion in Marguerite Trough consistent with bottom-trapped topographic Rossby waves.
 
(cont.) The subtidal circulation in the trough has a significant wind-driven component in Marguerite Trough, with downwelling-favorable winds forcing cross-shelf flow on the northern side of the trough and along the shore on the outer shelf. Upwelling-favorable winds force roughly the opposite circulation. The cyclonic circulation on the trough helps advect blobs of salty, warm and nutrient-rich water across the shelf. These intrusions are small (;4 km) and frequent (4 events/month). Also, the Antarctic Peninsula Coastal Current (APCC), a coastal buoyant current which is described for the first time here. The APCC is a seasonal current which is only present during the ice-free season and is forced by freshwater fluxes associated with large glacier melt and precipitation rates in the region.
 
Description
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007.
 
Includes bibliographical references (p. 177-186).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42104
Department
Joint Program in Applied Ocean Physics and Engineering; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences., /Woods Hole Oceanographic Institution. Joint Program in Applied Ocean Science and Engineering., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.