MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sampling based on local bandwidth

Author(s)
Wei, Dennis
Thumbnail
DownloadFull printable version (7.767Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Alan V. Oppenheim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The sampling of continuous-time signals based on local bandwidth is considered in this thesis. In an intuitive sense, local bandwidth refers to the rate at which a signal varies locally. One would expect that signals should be sampled at a higher rate in regions of higher local bandwidth, and at a lower rate in regions of lower local bandwidth. In many cases, sampling signals based on local bandwidth can yield more efficient representations as compared with conventional uniform sampling, which does not exploit local signal characteristics. In the first part of the thesis, a particular definition for a linear time-varying lowpass filter is adopted as a potential model for local bandwidth. A sampling and reconstruction method permitting consistent resampling is developed for signals generated by such filters. The method does not generally result in perfect reconstruction except for a special class of self-similar signals. However, the reconstruction error is shown to decrease with the variation in the cut-off frequency of the filter. In the second part of the thesis, a definition for local bandwidth based on the time-warping of globally bandlimited signals is reviewed. Using this definition, a method is developed for sampling and reconstructing signals according to local bandwidth. The method employs a time-warping to minimize the energy of a signal above a given maximum frequency. A number of techniques for determining the optimal time-warping are examined.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 105-106).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42112
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.