Show simple item record

dc.contributor.advisorMichael D. Ernst and Jeff H. Perkins.en_US
dc.contributor.authorXiao, Chen, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-09-03T14:40:07Z
dc.date.available2008-09-03T14:40:07Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42127
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 93-95).en_US
dc.description.abstractDynamic invariant detection is the identification of the likely properties about a program based on observed variable values during program execution. While other dynamic invariant detectors use a brute force algorithm, Daikon adds powerful optimizations to provide more scalable invariant detection without sacrificing the richness of the reported invariants. Daikon improves scalability by eliminating redundant invariants. For example, the suppression optimization allows Daikon to delay the creation of invariants that are logically implied by other true invariants. Although conceptually simple, the implementation of this optimization in Daikon has a, large fixed cost and scales polynomially with the number of program variables. I investigated performance problems in two implementations of the suppression optimization in Daikon and evaluated several methods for improving the algorithm for the suppression optimization: optimizing existing algorithms, using a hybrid, context-sensitive approach to maximize the effectiveness of the two algorithms, and batching applications of the algorithm to lower costs. Experimental results showed a 10% runtime improvement in Daikon runtime. In addition, I implemented an oracle to verify the implementation of these improvements and the other optimizations in Daikon.en_US
dc.description.statementofresponsibilityby Chen Xiao.en_US
dc.format.extent95 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titlePerformance enhancements for a dynamic invariant detectoren_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc227813645en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record