MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of in vitro engineered microvascular networks and their application in the treatment of chronic wounds

Author(s)
King, Connie Hong-Yee
Thumbnail
DownloadFull printable version (4.063Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Mark Keegan and Darrell J. Irvine.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As the number of individuals suffering from tissue loss and end-stage organ failure continues to grow, researchers are turning to tissue engineering to provide better methods of treatment. The field, however, still faces many technical challenges that are limiting its applications. One challenge faced in engineering more complex tissues and organs is the need for inherent microvasculature to supply the tissue with nutrients and oxygen. Researchers at The Charles Stark Draper Laboratory have developed a method for engineering microvascular networks in vitro using various microfabrication techniques. This paper discusses the current state of the research and technical challenges to overcome before commercializing the technology. The feasibility of using the networks in the nearer term application of treating chronic wounds will also be assessed, and a potential business strategy will be laid out.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
 
"September 2007."
 
Includes bibliographical references (p. 67-72).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42154
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.