MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncertainty analysis of an aviation climate model and an aircraft price model for assessment of environmental effects

Author(s)
Jun, Mina
Thumbnail
DownloadFull printable version (8.809Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Ian Waitz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Estimating, presenting, and assessing uncertainties are important parts in assessment of a complex system. This thesis focuses on the assessment of uncertainty in the price module and the climate module in the Aviation Environmental Portfolio Management Tool (APMT). The aircraft price module is a part of the Partial Equilibrium Block (PEB) and the climate module is a part of the Benefits Valuation Block (BVB) of the APMT. The PEB estimates a future fleet and flight schedule and evaluates manufacturer costs, operator costs, and consumer surplus. The BVB estimates changes in health and welfare for climate, local air quality, and noise from noise and emissions inventories output from the Aviation Environmental Design Tool (AEDT). The assessment was conducted with various uncertainty assessment and sensitivity analysis methods: the nominal range sensitivity analysis (NRSA), the hybrid Monte Carlo sensitivity analysis, the Monte Carlo regression analysis, the vary-all-but-one Monte Carlo analysis, and the global sensitivity analysis with Sobol' indices and total sensitivity indices. Except the NRSA, all other analysis methods are based on the Monte Carlo simulation with random sampling. All uncertainty assessment methods provided the same ranking of significant variables in both APMT modules. Two or three significant variables are clearly distinguished from other insignificant variables. In the price module, seat coefficients are the most significant parameters, and age is an insignificant factor between input variables of the regression model. In the climate module, statistical analyses showed that climate sensitivity and short-lived RF are most significant variables that contribute the variability of all three outputs. However, the HMC analysis suggested that discount rate is the most sensitive factor in the NPV estimation.
 
(cont.) Comparing the Sobol's indices with the total sensitivity indices showed that there are no significant interactions to change the ranking of significant variables in both modules.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.
 
Includes bibliographical references (p. 91-95).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42191
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.