MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Virtual infrastructure for wireless ad hoc networks

Author(s)
Gilbert, Seth, 1976-
Thumbnail
DownloadFull printable version (37.31Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Nancy Lynch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/42228 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
One of the most significant challenges introduced by ad hoc networks is coping with the unpredictable deployment, uncertain reliability, and erratic communication exhibited by emerging wireless networks and devices. The goal of this thesis is to develop a set of algorithms that address these challenges and simplify the design of algorithms for ad hoc networks. In the first part of this thesis, I introduce the idea of virtual infrastructure, an abstraction that provides reliable and predictable components in an unreliable and unpredictable environment. This part assumes reliable communication, focusing primarily on the problems created by unpredictable motion and fault-prone devices. I introduce several types of virtual infrastructure, and present new algorithms based on the replicated-state-machine paradigm to implement these infrastructural components. In the second part of this thesis, I focus on the problem of developing virtual infrastructure for more realistic networks, in particular coping with the problem of unreliable communication. I introduce a new framework for modeling wireless networks based on the ability to detect collisions. I then present a new algorithm for implementing replicated state machines in wireless networks, and show how to use replicated state machines to implement virtual infrastructure even in an environment with unreliable communication.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (v. 2, p. 585-591) and index.
 
Date issued
2007
URI
http://dspace.mit.edu/handle/1721.1/42228
http://hdl.handle.net/1721.1/42228
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.