MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A biologically inspired system for action recognition

Author(s)
Jhuang, Hueihan
Thumbnail
DownloadFull printable version (3.605Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Tomaso Poggio.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present a biologically-motivated system for the recognition of actions from video sequences. The approach builds on recent work on object recognition based on hierarchical feedforward architectures and extends a neurobiological model of motion processing in the visual cortex. The system consists of a hierarchy of spatio-temporal feature detectors of increasing complexity: an input sequence is first analyzed by an array of motion-direction sensitive units which, through a hierarchy of processing stages, lead to position-invariant spatio-temporal feature detectors. We experiment with different types of motion-direction sensitive units as well as different system architectures. Besides, we find that sparse features in intermediate stages outperform dense ones and that using a simple feature selection approach leads to an efficient system that performs better with far fewer features. We test the approach on different publicly available action datasets, in all cases achieving the best results reported to date.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 51-58).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42247
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.