MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geochemical and rheological constraints on the dynamics of the oceanic upper mantle

Author(s)
Warren, Jessica Mendelsohn
Thumbnail
DownloadFull printable version (6.008Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Nobumichi Shimizu, Gregory Hirth and Henry J.B. Dick.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/42281 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
I provide constraints on mantle convection through observations of the rheology and composition of the oceanic upper mantle. Convection cannot be directly observed, yet is a fundamental part of the plate tectonic cycle. Relative motion among plates is accommodated by localized deformation at their boundaries. I demonstrate that in the ductile regime, strain localization occurs when different mineral phases are mixed together, limiting grain annealing. Upper mantle flow is by dislocation creep, resulting in seismic anisotropy due to mineral alignment. I use a shear zone in the Josephine Peridotite to quantify the relationship between mineral orientation and shear strain, providing an improved framework for the interpretation of seismic anisotropy. The upper mantle is generally assumed to be homogeneous in composition. From detailed isotopic and chemical analyses of abyssal peridotites from the Southwest Indian Ridge, I show that the mantle is heterogeneous at a range of length-scales. Abyssal peridotites recovered at ocean ridges are generally interpreted as the depleted residues of melt extraction. I find that melt-rock reaction is a significant part of the melt extraction process, modifying the composition of the lithospheric mantle. The generation of heterogeneous lithosphere provides a source for asthenospheric heterogeneity, via subduction and mantle convection.
Description
Thesis (Ph. D.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references.
 
Date issued
2007
URI
http://dspace.mit.edu/handle/1721.1/42281
http://hdl.handle.net/1721.1/42281
Department
Joint Program in Marine Geology and Geophysics; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Marine Geology and Geophysics., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.