MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-objective evolutionary methods for time-changing portfolio optimization problems

Author(s)
Hatzakis, Iason
Thumbnail
DownloadFull printable version (26.23Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Henry S. Marcus.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis is focused on the discovery of efficient asset allocations with the use of evolutionary algorithms. The portfolio optimization problem is a multi-objective optimization problem for the conflicting criteria of risk and expected return. Furthermore the nonstationary nature of the market makes it a time-changing problem in which the optimal solution is likely to change as time advances. Hence the portfolio optimization problem naturally lends itself to an exploration with multi-objective evolutionary algorithms for time-changing environments. Two different risk objectives are treated in this work: the established measure of standard deviation, and the Value-at-Risk. While standard deviation is convex as an objective function, historical Value-at-Risk is non-convex and often discontinuous, making it difficult to approach with most conventional optimization techniques. The value of evolutionary algorithms is demonstrated in this case by their ability to handle the Value-at-Risk objective, since they do not have any convexity or differentiability requirements. The D-QMOO time-changing evolutionary algorithm is applied to the portfolio optimization problem. Part of the philosophy behind D-QMOO is the exploitation of predictability in the optimal solution's motion. This problem however is characterized by minimal or non-existent predictability, since asset prices are hard to forecast. This encourages the development of new time-changing optimization heuristics for the efficient solution of this problem. Both the static and time-changing forms of the problem are treated and characteristic results are presented. The methodologies proposed are verified through comparison with established methods and through the performance of the produced portfolios as compared to the overall market. In general, this work demonstrates the potential for the use of evolutionary algorithms in time-changing portfolio optimization as a tool for portfolio managers and financial engineers.
Description
Thesis (S.M. in Ocean Systems Management)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
 
Includes bibliographical references (p. 77-79).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42307
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.