MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduce cycle time and work in process in a medical device factory : scheduling of needle hub molding machines

Author(s)
Yao, Jing, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (7.328Mb)
Alternative title
Reduce cycle time and WIP in a medical device factory : scheduling of needle hub molding machines
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Stephen C. Graves.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Many manufacturing firms have improved their operations by implementing a work-in-process (WIP) limiting control strategy. This project explores the application of this concept to limit WIP and reduce cycle time for the Becton, Dickinson and Company's manufacturing facility in Tuas, Singapore. BD's Eclipse Safety Needle production line is facing increasing pressure to reduce its high WIP and long cycle times. With the forecast of increasing demand, the current production control practice will sooner or later push the shop floor space to a limit. We divided the overall system into three manageable sub-systems and analyzed different strategies for each. This paper documents the approaches to schedule 30 molding machines. These machines are located at the first stage of the production line. Although the total production rate of the 30 machines is higher than the downstream machines, the production rate of each product type is much slower because of machine constraints. This project groups the 30 machines into three groups, and proposes different strategies to reduce the total WIP level and cycle time.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
 
Includes bibliographical references (p. 51).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42326
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.