Show simple item record

dc.contributor.advisorDavid C. Page.en_US
dc.contributor.authorLange, Julian H. (Julian Hendrik)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biology.en_US
dc.date.accessioned2008-09-03T15:33:00Z
dc.date.available2008-09-03T15:33:00Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42400
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2008.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractMammalian sex chromosomes began diverging from an ordinary pair of autosomes roughly 300 million years ago. Inversions in the evolving Y chromosome sequentially suppressed recombination with the X chromosome. While pseudoautosomal regions in the human Y chromosome still participate regularly in allelic homologous recombination, the male-specific region of the Y (MSY) - the only haploid portion of the nuclear genome - does not. It does, however, engage in non-allelic homologous recombination. In this thesis, I examine modes and outcomes of non-allelic homologous recombination in the MSY. The predictions presented here are based on the double-strand break repair model of recombination between homologous chromosomes, in which a double-strand break (DSB) is the common precursor to crossing over and gene conversion. First, I show that massive MSY-specific palindromes, which maintain arm-to-arm sequence identity via gene conversion, are also the targets of crossing over. Crossover events in palindromes can lead to isochromosome formation and diverse reproductive disorders including sex reversal, male infertility, and Turner syndrome. Second, I demonstrate that a region of the MSY - thought to be recombinationally suppressed with the X chromosome - does undergo extensive X-Y gene conversion. This region encompasses hotspots of ectopic crossover events that lead to X-Y translocations associated with sex reversal syndromes. Although sequences in the MSY engage in productive recombination via gene conversion, alternative resolution of DSBs by crossing over can produce evolutionary "dead ends".en_US
dc.description.statementofresponsibilityby Julian H. Lange.en_US
dc.format.extent201 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleDiverse outcomes of homologous recombination in the human Y chromosomeen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc237105376en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record