Show simple item record

dc.contributor.advisorCatherine L. Drennan.en_US
dc.contributor.authorBlasiak, Leah Cameronen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2008-11-07T14:09:50Z
dc.date.available2008-11-07T14:09:50Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42914
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractHalogenated natural products are common and serve roles as hormones, pesticides, antibiotics, and anti-tumor agents. The incorporation of a halogen atom into an organic scaffold can tune the molecule's potency and selectivity, making halogenation an important tailoring reaction. To understand the mechanisms of enzymatic halogenation of natural products, X-ray crystallography was used to solve structures of enzymes from two classes of halogenases, the flavin-dependent halogenases and the non-heme iron dependent halogenases. Structures of the flavin-dependent tryptophan 7-halogenase RebH from Lechevalieria aerocolonigenes, involved in rebeccamycin biosynthesis, were solved by molecular replacement. These structures show distant flavin and L-Trp binding sites and identify the conserved residue Lys79 as a likely candidate for covalent modification to produce an enzyme-bound lysine chloramine intermediate. A lysine chloramine at this position would direct the chlorination reaction to the correct site on the substrate, which could account for the halogenase's observed regioselectivity. Crystal structures of the non-heme iron-dependent threonine 4-halogenase SyrB2 from Pseudomonas syringae, involved in syringomycin biosynthesis, were solved using selenomethionine labeling and single wavelength anomalous dispersion (SAD) techniques. These structures show an overall cupin or [beta]-sandwich fold and a novel iron binding motif containing a naturally occurring iron-chloride bond. The carboxylate ligand typically found in non-heme iron dependent hydroxylases is replaced by an alanine residue in the halogenases, opening a coordination site for the halide and suggesting a mechanism by which these enzymes accomplish halogenation instead of hydroxylation.en_US
dc.description.abstract(cont)The final chapter of this thesis reviews the known classes of halogenating enzymes and examines questions of halide binding and selectivity from the perspective of protein structure.en_US
dc.description.statementofresponsibilityby Leah Cameron Blasiak.en_US
dc.format.extent234 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleCrystallographic studies on enzymatic halogenation of natural productsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.identifier.oclc244391459en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record