Show simple item record

dc.contributor.advisorMaria T. Zuber.en_US
dc.contributor.authorMazarico, Erwan Matías Alexandre, 1981-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2008-11-07T14:10:44Z
dc.date.available2008-11-07T14:10:44Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42923
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractSince the first in situ observations of the Martian atmosphere were made by the twin Viking landers, we have learned considerably more about its composition, dynamics and variability. Not only did the new data on global atmospheric densities generate opportunities to understand the atmospheric composition of early Mars and supply constraints at the upper limit of General Circulation Models, it is critical for the design and planning of future exploration missions. We can complement the successes of remote sensing and accelerometer investigations by using radio tracking data that have not been studied from an atmospheric science perspective, or are available for the first time. Due to the very low density of the higher layers atmosphere, the estimation of the drag acceleration using Precision Orbit Determination is a challenge. We developed new numerical models of the non-conservative forces acting on the spacecraft. In particular, the spacecraft crosssectional area is calculated using improved spacecraft macro-models which include interplate shadowing. These improvements in the force modeling enable a more robust estimation of the atmospheric density. The density structure from the middle atmosphere up to the exosphere is studied using radio tracking data from the Mars Odyssey and the Mars Reconnaissance Orbiter spacecraft. Measurements in the Martian middle atmosphere, near 100 -- 110 km, are obtained from the aerobraking phase of the Mars Odyssey spacecraft; we obtain periapsis density estimates consistent with the Accelerometer Team, and estimate scale heights representative of the drag environment from an operational point of view. The orbit of Mars Odyssey during its mapping and extended phases allows us to probe very high in the exosphere, near 400 km altitude. In the retrieved density time series, we observe some of the features of solar forcing and seasonal cycle predicted by different atmospheric models.en_US
dc.description.abstract(cont.) The most recent radio tracking data, from the Mars Reconnaissance Orbiter mapping mission, enables a monitoring of densities near 250 -- 300 km at higher temporal and spatial resolutions, allowing a more detailed study than previously possible.en_US
dc.description.statementofresponsibilityby Erwan Mazarico.en_US
dc.format.extent268 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleStudy of the Martian upper atmosphere using radio tracking dataen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc248026366en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record