MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous blending of dry pharmaceutical powders

Author(s)
Pernenkil, Lakshman
Thumbnail
DownloadFull printable version (7.845Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Charles L. Cooney.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes delays in transforming a drug in research to a drug under commercial production. Continuous blending is as an attractive alternative design choice to batch process and is examined in this work. This work proposes to examine the feasibility of applying continuous blending in pharmaceutical manufacturing. Two kinds of blenders, a double helical ribbon blender and a Zigzag R blender were chosen as experimental systems representing high shear and moderate shear equipment. This work first focuses on developing a process understanding of continuous blending by examining the ow behavior of powders in experimental blenders using impulse stimulus response experiments and subsequent residence time distribution analysis. Powder ow behavior was modeled using an residence time distribution models like axial dispersion models. These ow behavior studies were followed by blender performance studies. The dependence of the mixing performance of the continuous blending system on different operational variables like rotation rates of mixing elements and raw material properties like particle size, shape and cohesion were studied. Mean residence time and time period of fluctuation in the concentration of active ingredient coming at the inlet were the two most important operational variables that affected blender performance. Larger particles and particles with less cohesion were seen to mix well with higher dispersion coefficients in a ribbon blender. A residence time distribution based process model for continuous blending was investigated and shown to depict the process well within experimental errors in determining the parameters of the residence time distribution model.
 
(cont.) The predictive capability of the process model was found to dependent on the scale of scrutiny of the powder mixture in the blender. Choosing the correct scale of scrutiny was demonstrated to be of critical importance in determination of blend quality. Growing pressures on pharmaceutical industry due to patent expirations has forced manufacturers to look beyond the US and EU for potential manufacturing locations in addition to invest in novel manufacturing methods and technologies. The capstone work in this thesis proposes a framework that managers of pharmaceutical and biologics manufacturing can utilize to identify critical issues in globalization of manufacturing and in making strategic manufacturing location decisions.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 269-279).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/42945
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.