Show simple item record

dc.contributor.advisorNancy A. Lynch.en_US
dc.contributor.authorFan, Rui, 1977-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-11-07T18:54:03Z
dc.date.available2008-11-07T18:54:03Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/43030
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 167-170).en_US
dc.description.abstractDistributed computing is the study of achieving cooperative behavior between independent computing processes with possibly conflicting goals. Distributed computing is ubiquitous in the Internet, wireless networks, multi-core and multi-processor computers, teams of mobile robots, etc. In this thesis, we study two fundamental distributed computing problems, clock synchronization and mutual exclusion. Our contributions are as follows. 1. We introduce the gradient clock synchronization (GCS) problem. As in traditional clock synchronization, a group of nodes in a bounded delay communication network try to synchronize their logical clocks, by reading their hardware clocks and exchanging messages. We say the distance between two nodes is the uncertainty in message delay between the nodes, and we say the clock skew between the nodes is their difference in logical clock values. GCS studies clock skew as a function of distance. We show that surprisingly, every clock synchronization algorithm exhibits some execution in which two nodes at distance one apart have Q( lo~gD clock skew, where D is the maximum distance between any pair of nodes. 2. We present an energy efficient and fault tolerant clock synchronization algorithm suitable for wireless networks. The algorithm synchronizes nodes to each other, as well as to real time. It satisfies a relaxed gradient property. That is, it guarantees that, using certain reasonable operating parameters, nearby nodes are well synchronized most of the time. 3. We study the mutual exclusion (mutex) problem, in which a set of processes in a shared memory system compete for exclusive access to a shared resource. We prove a tight Q(n log n) lower bound on the time for n processes to each access the resource once. .en_US
dc.description.abstract(cont.) Our novel proof technique is based on separately lower bounding the amount of information needed for solving mutex, and upper bounding the amount of information any mutex algorithm can acquire in each step. We hope that our results offer fresh ways of looking at classical problems, and point to interesting new open problemsen_US
dc.description.statementofresponsibilityby Rui Fan.en_US
dc.format.extent170 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLower bounds in distributed computingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc243603548en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record