MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning noisy characters, multiplication codes, and cryptographic hardcore predicates

Author(s)
Akavia, Adi
Thumbnail
DownloadFull printable version (13.50Mb)
Alternative title
Learning noisy characters, MPC, and cryptographic hardcore predicates
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Shafi Goldwasser.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present results in cryptography, coding theory and sublinear algorithms. In cryptography, we introduce a unifying framework for proving that a Boolean predicate is hardcore for a one-way function and apply it to a broad family of functions and predicates, showing new hardcore predicates for well known one-way function candidates such as RSA and discrete-log as well as reproving old results in an entirely different way. Our proof framework extends the list-decoding method of Goldreich and Levin [38] for showing hardcore predicates, by introducing a new class of error correcting codes and new list-decoding algorithm we develop for these codes. In coding theory, we introduce a novel class of error correcting codes that we name: Multiplication codes (MPC). We develop decoding algorithms for MPC codes, showing they achieve desirable combinatorial and algorithmic properties, including: (1) binary MPC of constant distance and exponential encoding length for which we provide efficient local list decoding and local self correcting algorithms; (2) binary MPC of constant distance and polynomial encoding length for which we provide efficient decoding algorithm in random noise model; (3) binary MPC of constant rate and distance. MPC codes are unique in particular in achieving properties as above while having a large group as their underlying algebraic structure. In sublinear algorithms, we present the SFT algorithm for finding the sparse Fourier approximation of complex multi-dimensional signals in time logarithmic in the signal length. We also present additional algorithms for related settings, differing in the model by which the input signal is given, in the considered approximation measure, and in the class of addressed signals. The sublinear algorithms we present are central components in achieving our results in cryptography and coding theory.
 
(cont) Reaching beyond theoretical computer science, we suggest employing our algorithms as tools for performance enhancement in data intensive applications, in particular, we suggest replacing the O(log N)-time FFT algorithm with our e(log N)-time SFT algorithm for settings where a sparse approximation suffices.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 181-187).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43032
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.