MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducing exception management overhead with software restart markers

Author(s)
Hampton, Mark Jerome, 1977-
Thumbnail
DownloadFull printable version (37.58Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Krste Asanović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Modern processors rely on exception handling mechanisms to detect errors and to implement various features such as virtual memory. However, these mechanisms are typically hardware-intensive because of the need to buffer partially-completed instructions to implement precise exceptions and enforce in-order instruction commit, often leading to issues with performance and energy efficiency. The situation is exacerbated in highly parallel machines with large quantities of programmer-visible state, such as VLIW or vector processors. As architects increasingly rely on parallel architectures to achieve higher performance, the problem of exception handling is becoming critical. In this thesis, I present software restart markers as the foundation of an exception handling mechanism for explicitly parallel architectures. With this model, the compiler is responsible for delimiting regions of idempotent code. If an exception occurs, the operating system will resume execution from the beginning of the region. One advantage of this approach is that instruction results can be committed to architectural state in any order within a region, eliminating the need to buffer those values. Enabling out-of-order commit can substantially reduce the exception management overhead found in precise exception implementations, and enable the use of new architectural features that might be prohibitively costly with conventional precise exception implementations. Additionally, software restart markers can be used to reduce context switch overhead in a multiprogrammed environment. This thesis demonstrates the applicability of software restart markers to vector, VLIW, and multithreaded architectures. It also contains an implementation of this exception handling approach that uses the Trimaran compiler infrastructure to target the Scale vectorthread architecture. I show that using software restart markers incurs very little performance overhead for vector-style execution on Scale.
 
(cont.) Finally, I describe the Scale compiler flow developed as part of this work and discuss how it targets certain features facilitated by the use of software restart markers
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 181-196).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43034
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.