MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aquatic microenvironments in bacterial ecology and diversity

Author(s)
Hunt, Dana E., Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (23.04Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Martin F. Polz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Molecular surveys have revealed tremendous bacterial diversity in the world's oceans; yet how do these diverse bacteria with the same essential nutrient requirements co-exist in the same environment? This study examines the role of aquatic microenvironments in generating bacterial diversity: closely related organisms may co-exist in the same environment without competing for resources by a combination of habitat, metabolic, and behavioral differentiation. This hypothesis has been approached from several angles: (i) Within the bacterial family Vibrionaceae is there evidence for microenvironmental specialization or functional differentiation? (ii) Is there small scale clustering of bacteria around phytoplankton in the coastal ocean? Microdiverse clusters (< 1% 16S rRNA gene divergence) of Vibrionaceae were found to be differentially distributed between zooplankton-enriched, particulate, and planktonic water column microenvironments. However microhabitat preferences may not correspond to metabolic capabilities; chitin metabolism was observed to be a near ubiquitous metabolic characteristic of the Vibrionaceae, yet does not appear to be linked to colonization of chitinous zooplankton or particles. Finally, the microscale patchiness of bacterial cells was examined over an annual cycle, revealing seasonal variation and a positive correlation with eukaryotic cell number, suggesting that bacteria may cluster in the nutrient-rich microzones around algae in the environment. This study seeks to answer several fundamental questions about marine bacterial populations: how do closely related species co-exist in the same environment, do bacteria adapt to distinct microscale environments and how important are these microenvironments to bacterial productivity.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008.
 
Page 116 blank.
 
Includes bibliographical references.
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43047
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.