MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large scale disease prediction

Author(s)
Schmid, Patrick R. (Patrick Raphael)
Thumbnail
DownloadFull printable version (6.677Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Bonnie Berger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The objective of this thesis is to present the foundation of an automated large-scale disease prediction system. Unlike previous work that has typically focused on a small self-contained dataset, we explore the possibility of combining a large amount of heterogeneous data to perform gene selection and phenotype classification. First, a subset of publicly available microarray datasets was downloaded from the NCBI Gene Expression Omnibus (GEO) [18, 5]. This data was then automatically tagged with Unified Medical Language System (UMLS) concepts [7]. Using the UMLS tags, datasets related to several phenotypes were obtained and gene selection was performed on the expression values of this tagged microarray data. Using the tagged datasets and the list of genes selected in the previous step, classifiers that can predict whether or not a new sample is also associated with a given UMLS concept based solely on the expression data were created. The results from this work show that it is possible to combine a large heterogeneous set of microarray datasets for both gene selection and phenotype classification, and thus lays the foundation for the possibility of automatic classification of disease types based on gene expression data in a clinical setting.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (leaves 69-73).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43068
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.