Show simple item record

dc.contributor.advisorMoe Z. Win.en_US
dc.contributor.authorShen, Yuan, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-11-07T18:58:38Z
dc.date.available2008-11-07T18:58:38Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/43069
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 107-112).en_US
dc.description.abstractLocation-awareness is essential for many wireless network applications. However, determining nodes' positions precisely is a challenging task, especially in harsh multipath propagation environments. To address this problem, wide bandwidth signals are envisioned to be used in future localization systems, since such signals can provide accurate range measurements. In this paper, we investigate the localization performance of wideband networks and proposed a performance measure called the squared position error bound (SPEB) to characterize the localization accuracy. We derive the SPEB succinctly by applying the notion of equivalent Fisher information (EFI). The EFI provides insights into the essence of localization problem by unifying the localization information from individual anchors and that from a priori knowledge of the agent's position in a canonical form. We also investigate the use of wideband antenna arrays and the effect of clock asynchronism on the localization accuracy. Our analysis begins with the received waveforms themselves rather than utilizing only signal metrics, such as time-of-arrival and received signal strength, extracted from the waveforms. Our framework exploits all the information inherent in the received waveforms, and therefore the SPEB serves as a fundamental limit of localization accuracy.en_US
dc.description.statementofresponsibilityby Yuan Shen.en_US
dc.format.extent112 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFundamental limits of wideband localizationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc244112842en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record