MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear springs with applications to flow regulation valves and mechanisms

Author(s)
Freeman, David Calvin
Thumbnail
DownloadFull printable version (117.3Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Alexander H. Slocum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis focuses on the application of nonlinear springs for fluid flow control valves where geometric constraints, or fabrication technologies, limit the use of available solutions. Types of existing nonlinear springs are discussed and categorized as either, single element springs or springs relying on external elements to provide nonlinear characteristics. This work discusses the design principles of, both, hardening and softening nonlinear springs and the development of a nonlinear spring system using a contact surface to increase or decrease stiffness. This work has been motivated by the development of a new automotive positive crankcase ventilation (PCV) valve that meets the flow requirements of the current production valve, yet resist stiction commonly associated with the freezing of the valve's internal components. The valve regulates the PCV system, which ventilates corrosive gases from the crankcase. Using the nonlinear spring design principles developed here, a valve has been designed that is estimated to cost 90% less than the current production valve, addresses the issue of freezing, reduces oil consumption by 54%, is less prone to hysteresis and eliminates flutter instabilities that cause the valve to violate flow specification. This thesis concludes with a discussion of the potential for this type of nonlinear spring in medical devices, toys, microsystems, mechanical couplings and fixturing.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
 
Includes bibliographical references (p. 193-195).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43146
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.