Show simple item record

dc.contributor.advisorMichael F. Rubner.en_US
dc.contributor.authorDelgadillo, Maricelaen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2008-11-07T19:16:26Z
dc.date.available2008-11-07T19:16:26Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/43212
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 35).en_US
dc.description.abstractPolyelectrolyte multilayer thin films are polymer films assembled through a layer-by-layer sequential addition of oppositely charged polymers. The layer-by-layer film assembly technique allows for properties such as film thickness, chemical functionality, and elastic moduli to be easily altered by changing the pH in solution, or the number of bilayers added. This thesis examined the use of polyelectrolyte multilayer films, assembled with poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA), to alter substrata mechanical stiffness, which was used to explore the response of biofilm forming staphylococci epidermidis. The formation of biofilms on medical device surfaces is currently responsible for a significant amount of infections acquired in hospitals. Currently mechanisms responsible for the initial adhesion of bacteria are not completely understood. Previous work completed in the Rubner and Van Vliet labs at MIT suggests a mechanoselective adhesion mechanism in prokaryotes. The existence of a positive correlation between mechanical stiffness and bacterial adhesion, independent of surface roughness or charge density, has already been shown in a non-biofilm forming strain of bacteria. This thesis focused on exploring the role mechanical stiffness substrata has on biofilm forming bacterial adhesion by conducting bacterial assay experiments on polyelectrolyte multilayer films. The results showed no positive correlation between mechanical stiffness and cell adhesion with biofilm forming staphylococcus epidermidis. Also, even under an applied shear force the amount of bacteria adhered on the surface was not affected. In all cases tested, the biofilm forming strain of bacteria was able to adhere and grow successfully.en_US
dc.description.statementofresponsibilityby Maricela Delgadillo.en_US
dc.format.extent35 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleStudy of the effect of mechanical stiffness substrata, assembled with polyelectrolyte multilayer thin films, on biofilm forming staphylococcus epidermidis' initial adhesion mechanismen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc259155752en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record