MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Percolation behavior of diffusionally evolved two-phase systems simulated using phase field methods

Author(s)
Brunini, Victor Eric
Thumbnail
DownloadFull printable version (4.177Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
W. Craig Carter and Christopher A. Schuh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Percolation is an important phenomenon that dramatically affects the properties of many multi-phase materials. As such, significant prior work has been done to investigate the percolation threshold and critical scaling exponents of randomly assembled composites. However many materials are non-random as a result of correlations that are introduced during processing. This work seeks to address this case by studying the percolation behavior of diffusionally evolved two phase systems. Specifically, the values of the percolation threshold and critical exponents v, 3, and 7 are presented for two dimensional systems evolved through spinodal decomposition and nucleation and growth.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008.
 
Includes bibliographical references (leaves 66-67).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43213
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.