Show simple item record

dc.contributor.advisorRichard A. Young.en_US
dc.contributor.authorJohnstone, Sarah Een_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biology.en_US
dc.date.accessioned2008-11-07T19:17:34Z
dc.date.available2008-11-07T19:17:34Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/43221
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2008.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractEmbryonic stem (ES) cells are of tremendous biological interest because they have the capacity, termed pluripotency, to generate any cell type of the adult organism. Our lab is interested in understanding the genetic circuitry that governs pluripotency. For my thesis work I have contributed to a team effort to deduce the transcriptional regulatory circuitry of ES cells. This collaborative effort first sought to define the genes that are regulated by the key pluripotency regulators, Oct4, Sox2 and Nanog. We then determined the genes targeted by the Polycomb Repressive Complex in ES cells. These datasets allowed us to define the core transcriptional regulatory circuitry for these cells and demonstrated that pluripotency is mediated through the repression of developmental regulators. Finally, an effort to understand how Wnt signaling modifies this circuitry led to the discovery that the Wnt signaling component Tcf3 is a core component of the transcriptional regulatory circuitry and serves to repress the pluripotency regulators, contributing to the balance between pluripotency and differentiation.en_US
dc.description.statementofresponsibilityby Sarah E. Johnstone.en_US
dc.format.extent275 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleMapping the core regulatory circuitry of embryonic stem cellsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc259222653en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record