Show simple item record

dc.contributor.advisorKaren E. Willcox.en_US
dc.contributor.authorWogrin, Sonjaen_US
dc.contributor.otherMassachusetts Institute of Technology. Computation for Design and Optimization Program.en_US
dc.date.accessioned2008-12-11T16:56:22Z
dc.date.available2008-12-11T16:56:22Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/43739
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 97-101).en_US
dc.description.abstractIn many settings, distributed sensors provide dynamic measurements over a specified time horizon that can be used to reconstruct information such as parameters, states or initial conditions. This estimation task can be posed formally as an inverse problem: given a model and a set of measurements, estimate the parameters of interest. We consider the specific problem of computing in real-time the prediction of a contamination event, based on measurements obtained by mobile sensors. The spread of the contamination is modeled by the convection diffusion equation. A Bayesian approach to the inverse problem yields an estimate of the probability density function of the initial contaminant concentration, which can then be propagated through the forward model to determine the predicted contaminant field at some future time and its associated uncertainty distribution. Sensor steering is effected by formulating and solving an optimization problem that seeks the sensor locations that minimize the uncertainty in this prediction. An important aspect of this Dynamic Sensor Steering Algorithm is the ability to execute in real-time. We achieve this through reduced-order modeling, which (for our two-dimensional examples) yields models that can be solved two orders of magnitude faster than the original system, but only incur average relative errors of magnitude O(10-3). The methodology is demonstrated on the contaminant transport problem, but is applicable to a broad class of problems where we wish to observe certain phenomena whose location or features are not known a priori.en_US
dc.description.statementofresponsibilityby Sonja Wogrin.en_US
dc.format.extent101 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectComputation for Design and Optimization Program.en_US
dc.titleModel reduction for dynamic sensor steering : a Bayesian approach to inverse problemsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computation for Design and Optimization Program
dc.identifier.oclc261495480en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record