Show simple item record

dc.contributor.advisorMary Cummings.en_US
dc.contributor.authorGraham, Hudson Den_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering Systems Division.en_US
dc.date.accessioned2008-12-11T16:56:38Z
dc.date.available2008-12-11T16:56:38Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/43741
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 101-105).en_US
dc.description.abstractWith advanced autonomy, Unmanned Aerial Vehicle (UAV) operations will likely be conducted by single operators controlling multiple UAVs. As operator attention is divided across multiple supervisory tasks, there is a need to support the operator's awareness of the state of the tasks for safe and effective task management. This research explores enhancing audio cues of UAV interfaces for this futuristic control of multiple UAVs by a single operator. This thesis specifically assesses the value of continuous and discrete audio cues as indicators of course-deviations or late-arrivals to targets for UAV missions with single and multiple UAVs. In particular, this thesis addresses two questions: (1) when compared with discrete audio, does continuous audio better aid human supervision of UAV operations, and (2) is the effectiveness of the discrete or continuous audio support dependent on operator workload? An experiment was carried out on the Multiple Autonomous Unmanned Vehicle Experiment (MAUVE) test bed with 44 military participants. Specifically, two continuous audio alerts were mapped to two human supervisory tasks within MAUVE. These continuous alerts were tested against single beep discrete alerts. The results show that the use of the continuous audio alerts enhances a single operator's performance in monitoring single and multiple, semi-autonomous vehicles. The results also emphasize the necessity to properly integrate the continuous audio with other auditory alarms and visual representations in a display, as it is possible for discrete audio alerts to be masked by continuous audio, leaving operators reliant on the visual aspects of the display.en_US
dc.description.statementofresponsibilityby Hudson D. Graham.en_US
dc.format.extent105 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.titleEffect of auditory peripheral displays on unmanned aerial vehicle operator performanceen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc263167694en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record