MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of the Projective Re-Normalization method on semidefinite programming feasibility problems

Author(s)
Yeung, Sai Hei
Thumbnail
DownloadFull printable version (3.688Mb)
Alternative title
Projective Re-Normalization method on semidefinite programming feasibility problems
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Robert M. Freund.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we study the Projective Re-Normalization method (PRM) for semidefinite programming feasibility problems. To compute a good normalizer for PRM, we propose and study the advantages and disadvantages of a Hit & Run random walk with Dikin ball dilation. We perform this procedure on an ill-conditioned two dimensional simplex to show the Dikin ball Hit & Run random walk mixes much faster than standard Hit & Run random walk. In the last part of this thesis, we conduct computational testing of the PRM on a set of problems from the SDPLIB [3] library derived from control theory and several univariate polynomial problems sum of squares (SOS) problems. Our results reveal that our PRM implementation is effective for problems of smaller dimensions but tends to be ineffective (or even detrimental) for problems of larger dimensions.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2008.
 
Includes bibliographical references (p. 75-76).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43800
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.