MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crystallization studies of Pictet-Spenglerases

Author(s)
Hillmann, William C. (William Carmen)
Thumbnail
DownloadFull printable version (27.93Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Sarah E. O'Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Natural products are a rich source of medicinally important molecules. Monoterpene indole alkaloids from plants are an especially important source of therapeutic molecules. Due to the complexity of these molecules, biosynthesis of derivatives is an attractive way of obtaining molecules with potentially new or improved functionality. The rational design of mutants with altered/expanded substrate scope is an important step in engineering organisms to produce such compounds. In monoterpene indole alkaloid biosynthesis, the enzyme strictosidine synthase catalyzes the first committed reaction. This reaction is a Pictet-Spengler coupling between tryptamine and secologanin and produces the biosynthetic intermediate strictosidine, common to all monoterpene indole alkaloids. To better understand the structural features that impart binding selectivity, crystallization studies of this enzyme were performed. The native enzyme and several interesting mutants were studied; co-crystallization experiments with inhibitors and substrates were also performed. Diffraction quality crystals of the native enzyme were obtained following optimization by grid screening, additive screens, and macroseeding. Data on the optimized crystals was collected at the Argonne National Labs synchrotron radiation source. In addition to monoterpene indole alkaloids, the benzylisoquinoline alkaloids are another class of medicinally important plant derived natural products. In a reaction analogous to that catalyzed by strictosidine synthase, the first committed step of benzylisoquinoline biosynthesis is a Pictet-Spengler reaction between 4-hydroxyphenylactetaldehyde and dopamine, catalyzed by the enzyme norcoclaurine synthase. Two different forms of this enzyme have been identified, neither of which shows any homology to strictosidine synthase.
 
(cont.) Structural information for these enzymes could provide general structural features required for enzymatic Pictet-Spengler reactions. Before crystallization, the enzymes were expressed and tested for activity. Once active preparations of protein were available, crystallization studies were performed and crystals were obtained.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2008.
 
Vita.
 
Includes bibliographical references.
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43812
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.