A novel polymeric microelectrode array for highly parallel, long-term neuronal culture and stimulation
Author(s)
Talei Franzesi, Giovanni
DownloadFull printable version (15.97Mb)
Other Contributors
Harvard University--MIT Division of Health Sciences and Technology.
Advisor
Martha Constantine-Paton and Ian W. Hunter.
Terms of use
Metadata
Show full item recordAbstract
Cell-based high-throughput screening is emerging as a disruptive technology in drug discovery; however, massively parallel electrical assaying of neurons and cardiomyocites has until now been prohibitively expensive. To address this limitation, we developed a scalable, all-organic 3D microelectrode array technology. The cheap, disposable arrays would be integrated into a fixed stimulation and imaging setup, potentially amenable to automated handling and data analysis. A combination of activity-dependent plasticity, made possible by independent control of up to 64 stimulating electrodes, and, eventually, of substrate chemical patterning would be employed to constrain the neuronal culture network connectivity. In order to ensure longterm survival of the cultures, a bottom feeder layer of glial cells would be grown. In addition to high-throughput screening application, the polymeric microelectrode arrays and integrated stimulation systems were designed to allow the long-term study of synaptic plasticity, combining excellent long-term culture capabilities with a unique ability to independently control each electrode stimulation pattern. The resulting activity could be monitored optically, e,g, with calcium or voltage sensitive dyes, and the images could be stored and processed (possibly even in real time) within the same environment (LabView) as the stimulator. To fabricate the polymeric microelectrode array, we prepare a multilayered mask substrate, by reversibly bonding together two sheets of implant-grade polydimethylsiloxane (PDMS) sheets, with or without a glass coverslip between them. Thanks to PDMS self-adhesive properties the various layers are held together stably but reversibly. The mask is then laser-patterned, using either a standard CO2 laser or a 193 nm excimer laser. (cont.) The mask can then be adhered onto a glassy carbon or ITO electrode, and polypyrrole, doped with either hyaluronic acid or sodium dodecylbenzesulfonic acid, can be electrodeposited through it. Finally, the construct is removed from the deposition bath and the upper, sacrificial mask layer carefully peeled away. This fabrication method allows exquisite control overall 3D electrode geometry, is suitable to produce structures between one and several hundred micrometers in diameter, either filled or tubular, and scales extremely well, so that, for example, 384 by 64 electrodes arrays can be patterned in just a few minutes and grown in the same time as a single array.
Description
Thesis (M. Eng.)--Harvard-MIT Division of Health Sciences and Technology, 2008. Includes bibliographical references (leaves 51-56).
Date issued
2008Department
Harvard University--MIT Division of Health Sciences and TechnologyPublisher
Massachusetts Institute of Technology
Keywords
Harvard University--MIT Division of Health Sciences and Technology.