dc.contributor.advisor | Jerome J. Connor. | en_US |
dc.contributor.author | Bajoria, Ankur | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. | en_US |
dc.date.accessioned | 2008-12-11T18:46:37Z | |
dc.date.available | 2008-12-11T18:46:37Z | |
dc.date.copyright | 2008 | en_US |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/43891 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008. | en_US |
dc.description | Includes bibliographical references (leaves 61-64). | en_US |
dc.description.abstract | Design of tall and long span structures is governed by the wind forces. Inadequate research in the field of wind dynamics has forced engineers to rely on design codes or wind tunnel tests for sufficient data. The present work uses a computational wind dynamics method to compare the coefficient of pressure (Cp) for the different aerodynamic shapes. ADINA, a finite element package, contains an inbuilt turbulence model which will be used to construct four different shapes for comparison. Results are verified with the experimental and simulation data. The effect of increase in the Reynolds number on the flow has been studied. Graphs for the pressure, velocity and turbulence energy distribution have been developed to assist the engineers in design. | en_US |
dc.description.statementofresponsibility | by Ankur Bajoria. | en_US |
dc.format.extent | 97 leaves | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Civil and Environmental Engineering. | en_US |
dc.title | Computational wind engineering using finite element package ADINA | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering | |
dc.identifier.oclc | 263685393 | en_US |