Show simple item record

dc.contributor.advisorChristine Ortiz.en_US
dc.contributor.authorBruet, Benjamin J. F. (Benjamin Jean Fernand), 1980-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2009-01-26T22:01:00Z
dc.date.available2009-01-26T22:01:00Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/44200
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 211-222).en_US
dc.description.abstractGastropod mollusk nacre tablets and Polypterus senegalus armored scales share common features such as a very complex and changing structure spanning several length scales. The smallest building blocks are single crystals, have dimensions of a from tens of nanometers to several microns and are intimately blended with an organic glue present within pores or between the crystallites. In particular, our results strongly suggest that nacre tablets possess nanoscale porosity in the form of elongated tubules that may contain the intratablet macromolecules. Their unique structure allows these materials deform in a ductile way at the nanoscale, with no cracks observed, and to confine deformation at the microscale so as to impede crack propagation. Gradient in the mechanical properties are ubiquitous at both the microscale (scales) and the nanoscale (nacre tablets), preventing stress concentration and enhancing strain distribution. The armored scales thus exhibit a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, as well as layer with an undetectable gradation. Though highly mineralized, these biomaterials also exhibit greater local heterogeneity in their mechanical properties compared to pure minerals. Materials layers have distinct morphology and mechanical properties depending on their role (resistance to abrasion for harder outer layers, resistance to fracture for tougher inner layers) and their interface are reinforced (by anchored organic fiber ligaments and corrugated interfaces that maximize contact surface., preventing propagation of cracks both through and along the interfaces.en_US
dc.description.abstract(cont.) The heterogeneity in size and shape of the crystallites and the pores, as well as the variation in the composition (mineral / organic, crystalline amorphous) are likely responsible for the desirable variations of mechanical properties as observed in these biocomposites at the smallest length scales, resulting in more spatially distributed strains and greater energy dissipation.en_US
dc.description.statementofresponsibilityBenjamin J.F. Bruet.en_US
dc.format.extent222 pen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleMultiscale structural and mechanical design of mineralized biocompositesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc275179510en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record