Show simple item record

dc.contributor.advisorKaren R. Sollins.en_US
dc.contributor.authorBeverly, Robert E., 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-01-26T22:01:51Z
dc.date.available2009-01-26T22:01:51Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/44210
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 167-[177]).en_US
dc.description.abstractThe Internet has become a ubiquitous substrate for communication in all parts of society. However, many original assumptions underlying its design are changing. Amid problems of scale, complexity, trust and security, the modern Internet accommodates increasingly critical services. Operators face a security arms race while balancing policy constraints, network demands and commercial relationships. This thesis espouses learning to embrace the Internet's inherent complexity, address diverse problems and provide a component of the network's continued evolution. Malicious nodes, cooperative competition and lack of instrumentation on the Internet imply an environment with partial information. Learning is thus an attractive and principled means to ensure generality and reconcile noisy, missing or conflicting data. We use learning to capitalize on under-utilized information and infer behavior more reliably, and on faster time-scales, than humans with only local perspective. Yet the intrinsic dynamic and distributed nature of networks presents interesting challenges to learning. In pursuit of viable solutions to several real-world Internet performance and security problems, we apply statistical learning methods as well as develop new, network-specific algorithms as a step toward overcoming these challenges. Throughout, we reconcile including intelligence at different points in the network with the end-to-end arguments. We first consider learning as an end-node optimization for efficient peer-to-peer overlay neighbor selection and agent-centric latency prediction. We then turn to security and use learning to exploit fundamental weaknesses in malicious traffic streams. Our method is both adaptable and not easily subvertible. Next, we show that certain security and optimization problems require collaboration, global scope and broad views.en_US
dc.description.abstract(cont.) We employ ensembles of weak classifiers within the network core to mitigate IP source address forgery attacks, thereby removing incentive and coordination issues surrounding existing practice. Finally, we argue for learning within the routing plane as a means to directly optimize and balance provider and user objectives. This thesis thus serves first to validate the potential for using learning methods to address several distinct problems on the Internet and second to illuminate design principles in building such intelligent systems in network architecture.en_US
dc.description.statementofresponsibilityby Robert Edward Beverly, IV.en_US
dc.format.extent175, [2] p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleStatistical learning in network architectureen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc289324794en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record