Show simple item record

dc.contributor.advisorCharles Cooney and Roy Welsch.en_US
dc.contributor.authorTozer, Stephanie Michelleen_US
dc.contributor.otherLeaders for Manufacturing Program.en_US
dc.date.accessioned2009-01-30T16:32:59Z
dc.date.available2009-01-30T16:32:59Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/44325
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 99-103).en_US
dc.description.abstractDue to the highly regulated environment, it is difficult to implement changes to a pharmaceutical process. Even small change request approvals can require months of effort for pharmaceutical companies and regulatory agencies. This resource intensive process discourages continuous improvement and often results in outdated and inefficient manufacturing processes. In response to the growing need for improvement, the FDA issued a guidance to industry that provides a framework for acquiring improved process understanding and product quality in the manufacturing industry. The guidance is aimed at encouraging the use of process analytical technology (PAT) to monitor key quality attributes continuously during the process and enable early fault detection. The goal is to transition from the current method of quality through end of process testing to a new method of quality by design (QbD). In 2005 Novartis Pharma formed a unique collaboration with the FDA in an attempt to demonstrate the benefits and concepts of QbD. A cross-functional team was formed with the goal of developing a case study for one Novartis process that will serve as a model for future implementation of PAT and QbD.During a six month internship, I worked with the Global PAT team members to help ensure the successful implementation of the QbD tools outlined in the FDA Guidance. The internship focused only on the drug substance manufacturing process. Specifically, I was responsible for collecting and analyzing process data during the manufacturing campaign, coordinating the commissioning of an on-line NIR probe and PSD analyzer, and identifying and proposing future benefits of PAT applications to Novartis Pharma.en_US
dc.description.abstract(cont.) I also conducted a throughput analysis after observing manufacturing operations and analyzing the process data collected during the campaign.My thesis provides a background of the QbD/PAT initiative and includes a thorough literature search to benchmark the progress other pharmaceutical companies have made at applying QbD/PAT. I discuss in more detail the Novartis PAT project, and my specific contribution including the results of the NIR and PSD installation and validation, full scale Design of Experiment activities, Multivariate Data Analysis modeling, and process throughput analysis. I conclude with an analysis of barriers to implementation and provide recommendations for future implementation to other processes and plants at Novartis.en_US
dc.description.statementofresponsibilityby Stephanie Michelle Tozer.en_US
dc.format.extent110 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectChemical Engineering.en_US
dc.subjectLeaders for Manufacturing Program.en_US
dc.titleImplementation of the new FDA quality by design guidance in pharmaceutical productionen_US
dc.title.alternativeImplementation of the new Food and Drug Administration QbD guidance in pharmaceutical productionen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Manufacturing Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc275198293en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record