MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discourse models for collaboratively edited corpora

Author(s)
Chen, Erdong, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (12.03Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Regina Barzilay.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis focuses on computational discourse models for collaboratively edited corpora. Due to the exponential growth rate and significant stylistic and content variations of collaboratively edited corpora, models based on professionally edited texts are incapable of processing the new data effectively. For these methods to succeed, one challenge is to preserve the local coherence as well as global consistence. We explore two corpus-based methods for processing collaboratively edited corpora, which effectively model and optimize the consistence of user generated text. The first method addresses the task of inserting new information into existing texts. In particular, we wish to determine the best location in a text for a given piece of new information. We present an online ranking model which exploits this hierarchical structure - representationally in its features and algorithmically in its learning procedure. When tested on a corpus of Wikipedia articles, our hierarchically informed model predicts the correct insertion paragraph more accurately than baseline methods. The second method concerns inducing a common structure across multiple articles in similar domains to aid cross document collaborative editing. A graphical model is designed to induce section topics and to learn topic clusters. Some preliminary experiments showed that the proposed method is comparable to baseline methods.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 77-81).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/44374
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.