Show simple item record

dc.contributor.advisorAnantha P. Chandrakasan.en_US
dc.contributor.authorIckes, Nathan J. (Nathan Jeffrey), 1979-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-01-30T16:44:25Z
dc.date.available2009-01-30T16:44:25Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/44418
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 171-176).en_US
dc.description.abstractUltra-low power systems, such as wireless microsensor networks or implanted medical devices, are driving the development of processors capable of performing increasingly complicated computations using mere microwatts of power. This thesis describes the design of a micropower DSP intended for medium bandwidth microsensor applications (such as acoustic sensing and tracking) which achieves 4 MIPS performance at 40 [mu]W (10 pJ per instruction) operating at 450 mV and fabricated in 90 nm CMOS. Energy efficiency optimizations include a custom CPU instruction set, a miniature instruction cache with a novel replacement strategy, hardware accelerator cores for FIR filter and FFT operations, and extensive power gating of both logic and memory. The tradeoffs of cache size, line length, and replacement policy for very small (a few hundred words or less) caches are explored, as are the design implications of optimizing the cache for minimum energy without regard to performance (since onchip memory access is already single-cycle). A replacement policy designed to reduce thrashing in miniature instruction caches is presented. Efficient control of power-gated circuits requires consideration of the minimum off time, or break-even time. An energy model for determining the break-even time is developed, which correlates with measurements of the power-gated domains on the DSP. The energy savings obtained from hardware accelerators for FIR filtering and FFT operations are measured, and a model is developed to predict the actual net power reduction in a real system, including factors such as sampling rate, leakage power, latency requirements, and power gating overhead.en_US
dc.description.statementofresponsibilityby Nathan J. Ickes.en_US
dc.format.extent176 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleA micropower DSP for sensor applicationsen_US
dc.title.alternativeMicropower digital signal processing for sensor applicationsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc289406261en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record