MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scheduling algorithms for arbitrary communication networks

Author(s)
Jagabathula, Srikanth
Thumbnail
DownloadFull printable version (5.150Mb)
Alternative title
Optimal scheduling algorithms for arbitrary networks
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Devavrat Shah.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We consider the problem of designing scheduling schemes for networks with arbitrary topology and scheduling constraints. We address the optimality of scheduling schemes for packet networks in terms of throughput, delay and fairness. Specifically, we design two scheduling schemes. The first one achieves simultaneous throughput and delay optimization. The second scheme provides fairness. We design a scheduling scheme that guarantees a per-flow average delay bound of O(number of hops), with a constant factor loss of throughput. We derive the constants for a network operating under primary interference constraints. Our scheme guarantees an average delay bound of ... is the number of hops and pj is the effective loading along flow j. This delay guarantee comes at a factor 5 loss of throughput. We also provide a counter-example to prove the essential optimality of our result. For the fair scheduling scheme, we define a packet-based notion of fairness by establishing a novel analogy with the ranked election problem. The election scheme of Goodman and Markowitz (1952) [14] yields a maximum weight style scheduling algorithm. We then prove the throughput optimality of the scheme for a single-hop network. Standard methods for proving the stability of queuing systems fail us and hence we introduce a non-standard proof technique with potential wider applications.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 89-91).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/44450
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.