dc.contributor.advisor | Ali Khademhosseini and Martha Gray. | en_US |
dc.contributor.author | Ling, Yibo | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2009-01-30T16:48:48Z | |
dc.date.available | 2009-01-30T16:48:48Z | |
dc.date.copyright | 2008 | en_US |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/44456 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008. | en_US |
dc.description | Vita. | en_US |
dc.description | Includes bibliographical references (leaves 116-123). | en_US |
dc.description.abstract | The engineering of artificial tissues for restoration or replacement of organ function holds the potential to alter the landscape of medical therapeutics. In many tissue engineering approaches, cells seeded within 3D porous structures are expected to remodel into tissue-like structures. Despite significant progress, difficulties in lack of control over tissue architecture as well as vascularization continue to limit the efficacy of engineered constructs. This thesis describes work aimed at tackling these two problems. First, two techniques for generating size- and shape-controlled cell-laden hydrogels are described in the context of potential modular assembly for conferring greater control over the geometry of homotypic and heterotypic cell arrangements within engineered tissues. Then, a method for producing cell-loaded microfluidic agarose hydrogels for tissue engineering is described. | en_US |
dc.description.statementofresponsibility | by Yibo Ling. | en_US |
dc.format.extent | 124 leaves | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Hydrogel cell encapsulation for tissue engineering | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 297119482 | en_US |