dc.contributor.advisor | Karl K. Berggren. | en_US |
dc.contributor.author | Leu, Joshua C. (Joshua Chung) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2009-01-30T16:48:54Z | |
dc.date.available | 2009-01-30T16:48:54Z | |
dc.date.copyright | 2008 | en_US |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/44457 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008. | en_US |
dc.description | Includes bibliographical references. | en_US |
dc.description.abstract | Patterned templates can guide the self-assembly of nanoparticles into ordered arrays. Our motivation in pursuing templated self-assembly is to develop a robust method for the creation of ordered structures at length scales below ten nanometers. The basic process entails creating surface relief templates via electron-beam lithography, and spin-coating a suspension of colloidal nanoparticles onto the template. As the solvent evaporates, the quantum dots self-assemble primarily through the capillary forces created by the dewetting of the template. We demonstrate this technique at sub-10nm length scales by spin-coating a solution of organically-capped CdZnS semiconducting quantum dots onto nanopatterned grating structures on silicon substrates. We observe the geometric confinement of the quantum dots via physical templating and capillary forces into well-ordered monolayer aggregates with defined lattice orientations. While recent research has demonstrated the ability to self-assemble sub-10nm metallic nanoparticles via capillary forces into physical templates of similar size, this work is unique in the demonstration of lattice orientation control via physical templating at sub-10nm length scales. | en_US |
dc.description.statementofresponsibility | by Joshua C. Leu. | en_US |
dc.format.extent | 67 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Templated self-assembly of sub-10 nm quantum dots | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 297119500 | en_US |