Show simple item record

dc.contributor.advisorMichael S. Feld.en_US
dc.contributor.authorŠćepanović, Obrad R., 1980-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-03-16T19:32:34Z
dc.date.available2009-03-16T19:32:34Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/44709
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 205-228).en_US
dc.description.abstractThe combination of reflectance, fluorescence, and Raman spectroscopy - which is termed multimodal spectroscopy (MMS) - provides complementary and depth-sensitive information about tissue composition. As such, MMS can provide biochemical and morphological information useful in detecting vulnerable atherosclerotic plaques, that is, plaques most prone to rupture and causing sudden death. Early detection of these vulnerable plaques is critical to reducing patient mortality associated with cardiovascular disease. In developing MMS into a clinical diagnostic modality, several scientific and engineering directions are explored in this work: the physical motivation for MMS, the framework of quantitative extraction of spectral parameters, the spectral probes that enable the efficient collection of data, a clinical instrument able to provide real-time diagnosis, and, finally, a clinical implementation of the entire methodology. The motivation for MMS is shown through a pilot in vitro study using carotid artery specimens, which shows the promise for MMS to detect features of vulnerable plaque. Having established the motivation, the next step describes the mathematical tools used to extract quantitative spectral parameters and, moreover, to assess the uncertainty and confidence of the spectral information. In order to implement MMS, the development of an efficient, specialized MMS probe for data acquisition and a compact and practical clinical MMS instrument are described. Lastly, in vivo and ex vivo results from a relatively large clinical study of vulnerable plaque in humans show excellent agreement between MMS and histopathology. Specifically, MMS is shown to have the ability to detect a thin fibrous cap, necrotic core or superficial foam cells, and thrombus.en_US
dc.description.abstract(cont.) In addition, these studies show that vulnerable plaques could be detected with a cross validated sensitivity of 89-96%, specificity of 72-78%, and a negative predictive value of 89-97%. These very encouraging results serve as an important step in bringing MMS into the clinical arena as a powerful diagnostic technique.en_US
dc.description.statementofresponsibilityby Obrad R. Šćepanović.en_US
dc.format.extent228 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDevelopment of multimodal spectroscopy for the detection of vulnerable atherosclerotic plaquesen_US
dc.title.alternativeDevelopment of MMS for the detection of vulnerable atherosclerotic plaquesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc297429369en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record