MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Population-wise consistent segmentation of diffusion weighted magnetic resonance images

Author(s)
Ziyan, Ulas
Thumbnail
DownloadFull printable version (35.22Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Carl-Fredrick Westin and W. Eric L. Grimson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we investigate unsupervised and semi-supervised methods to construct anatomical atlases and segment medical images. We propose an integrated registration and clustering algorithm to compute an anatomical atlas of fiber-bundles as well as deep gray matter structures from a population of diffusion tensor MR images (DT-MRI). We refer to this algorithm as "Consistency Clustering" since the outputs of the algorithm include population-wise consistent segmentations and correspondence between the subjects. The consistency is ensured through using a single anatomical model for the whole population, which is similar to the atlases used by experts for manual labeling. We experiment with both parametric and non-parametric models for the gray matter and white matter segmentation problems, each model resulting in a different kind of atlas. Consistent population-wise segmentations require development of several integrated algorithms for clustering, registration, atlas-building and outlier rejection. In this thesis we develop, implement and evaluate these tools individually and together as a population-wise segmentation tool. Together, Consistency Clustering enables automatic atlas construction in DT-MRI for a population, either normal or affected by a neural disorder. Consistency Clustering also provides the user the choice to include prior knowledge through a few labeled subjects (semi-supervised) or compute an anatomical atlas in a completely data driven manner (unsupervised). Furthermore, resulting anatomical models are compact representations of populations and can be used for population-wise morphometry. We implement and evaluate these methods using in vivo DT-MRI datasets. We investigate the benefits of population-wise segmentation as opposed to individually segmenting subjects, as well as effects of noise and initialization on the segmentations.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 161-167).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/44721
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.