MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combining linguistics and statistics for high-quality limited domain English-Chinese machine translation

Author(s)
Xu, Yushi, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.739Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Stephanie Seneff.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Second language learning is a compelling activity in today's global markets. This thesis focuses on critical technology necessary to produce a computer spoken translation game for learning Mandarin Chinese in a relatively broad travel domain. Three main aspects are addressed: efficient Chinese parsing, high-quality English-Chinese machine translation, and how these technologies can be integrated into a translation game system. In the language understanding component, the TINA parser is enhanced with bottom-up and long distance constraint features. The results showed that with these features, the Chinese grammar ran ten times faster and covered 15% more of the test set. In the machine translation component, a combined method of linguistic and statistical system is introduced. The English-Chinese translation is done via an intermediate language "Zhonglish", where the English-Zhonglish translation is accomplished by a parse-and-paraphrase paradigm using hand-coded rules, mainly for structural reconstruction. Zhonglish-Chinese translation is accomplished by a standard phrase based statistical machine translation system, mostly accomplishing word sense disambiguation and lexicon mapping. We evaluated in an independent test set in IWSLT travel domain spoken language corpus. Substantial improvements were achieved for GIZA alignment crossover: we obtained a 45% decrease in crossovers compared to a traditional phrase-based statistical MT system. Furthermore, the BLEU score improved by 2 points. Finally, a framework of the translation game system is described, and the feasibility of integrating the components to produce reference translation and to automatically assess student's translation is verified.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 86-87).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/44726
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.