Show simple item record

dc.contributor.advisorRoger D. Kamm.en_US
dc.contributor.authorAbdul Rahim, Nur Aidaen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2009-03-16T19:37:25Z
dc.date.available2009-03-16T19:37:25Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/44746
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 99-108).en_US
dc.description.abstractForce, due either to haemodynamic shear stress or relayed directly to the cell through adhesion complexes, is transmitted and translated into biological signals. This process is known as mechanotransduction. Extensive studies have been carried out on the signaling pathways involved in mechanotransduction. However, the mechanism(s) of mechanotransduction has yet to be fully understood. This thesis focuses on the measurement of the intracellular binding constant between focal adhesion proteins of interest, GFP-Paxillin and FAT-mCherry, using two-photon excitation fluorescence microscopy and the utility of it as a measure of protein conformational change. The hypothesis tested is that force-induced changes in protein conformation alter inter-protein binding affinity. A comprehensive toolkit that utilizes fluorescence microscopy techniques, Forster Resonance Energy Transfer (FRET) and its corollary, Fluorescence Lifetime Imaging (FLIM), as well as Fluorescence Correlation Spectroscopy (FCS), was developed. A procedure by which low photon counts cell data from FLIM could be included in global analysis fits and be corrected for was developed. This results in the recovery of maximum information from cellular data. Successful intracellular FCS measurements were combined with FLIM global analysis data to calculate the free energy of binding between GFP-Paxillin and FAT-mCherry. Results demonstrate that inter-cell heterogeneity exists and likely gives rise to differences in measured AIG. The application of these measurement techniques to cells experiencing 10% step strain shows that inter-protein binding is tighter upon stretch application. The source of this change is not clear, though Tyr phosphorylation has been ruled out by biochemical disruption of kinase activity.en_US
dc.description.statementofresponsibilityby Nur Aida Abdul Rahim.en_US
dc.format.extent108 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleInvestigating the mechanotransduction by two-photon fluorescence microscopy measurement of intracellular free energy of bindingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc298561100en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record