Engineering coherent control of quantum information in spin systems
Author(s)
Hodges, Jonathan Stuart
DownloadFull printable version (19.42Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Advisor
David G. Cory.
Terms of use
Metadata
Show full item recordAbstract
Quantum Information Processing (QIP) promises increased efficiency in computation. A key step in QIP is implementing quantum logic gates by engineering the dynamics of a quantum system. This thesis explores the requirements and methods of coherent control in the context of magnetic resonance for: (i) nuclear spins of small molecules in solution and (ii) nuclear and electron spins in single crystals. The power of QIP is compromised in the presence of decoherence. One method of protecting information from collective decoherence is to limit the quantum states to those respecting the symmetry of the noise. These decoherence-free subspaces (DFS) encode one logical quantum bit (qubit) within multiple physical qubits. In many cases, such as nuclear magnetic resonance (NMR), the control Hamiltonians required for gate engineering leak the information outside the DFS, whereby protection is lost: It is shown how one can still perform universal logic among encoded qubits in the presence of leakage. These ideas are demonstrated on four carbon-13 spins of a small molecule in solution. Liquid phase NMR has shortcomings for QIP, like the lack of strong measurement and low polarization. These two problems can be addressed by moving to solid-state spin systems and incorporating electron spins. If the hyperfine interaction has an anisotropic character, it is proven that the composite system of one electron and N nuclear spins (le-Nn) is completely controllable by addressing only to the electron spin. This 'electron spin actuator' allows for faster gates between the nuclear spins than would be achievable in its absence. In addition, a scheme using logical qubit encodings is proposed for removing the added decoherence due to the electron spin. Lastly, this thesis exemplifies arbitrary gate engineering in a le-ln ensemble solid-sate spin system using a home-built ESR spectrometer designed specifically for engineering high-fidelity quantum control.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2007. Includes bibliographical references (p. 151-161).
Date issued
2007Department
Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.